
arandomness Documentation
Release 0.1.0rc6

Alex Hyer

Nov 17, 2017

Contents

1 Introduction 3

2 Installation 5

3 Contents 7
3.1 argparse . 7
3.2 string . 12
3.3 trees . 13

4 Indices and tables 17

5 Copyright 19

Python Module Index 21

i

ii

arandomness Documentation, Release 0.1.0rc6

Authors Alex Hyer

Date Nov 17, 2017

Version 0.1

Initializes arandomness package

Copyright: __init.py__ initializes arandomness package Copyright (C) 2017 Alex Hyer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

Contents 1

http://www.gnu.org/licenses/

arandomness Documentation, Release 0.1.0rc6

2 Contents

CHAPTER 1

Introduction

arandomness is a package containing modules that I find myself re-writing for many programs. I’ve organized these
modules into this amalgamative package as they are generally too diverse to fit into independent libraries. In general,
I find the modules in arandomness to be very useful for many unrelated applications and wished to have them readily
accessible in a unified, production-level library with proper unit tests. I hope you find something in this library useful!

3

arandomness Documentation, Release 0.1.0rc6

4 Chapter 1. Introduction

CHAPTER 2

Installation

pip install arandomness

5

arandomness Documentation, Release 0.1.0rc6

6 Chapter 2. Installation

CHAPTER 3

Contents

3.1 argparse

Initializes argparse package of arandomness

Copyright: __init.py__ initializes argparse package of arandomness Copyright (C) 2017 Alex Hyer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

3.1.1 Introduction

The argparse subpackage of arandomness contains scripts and actions to expand the utility of Python’s argparse
library.

3.1.2 CheckThreads

CheckThreads is an argparse action, as such, it is called as the value of the action argument in argparse.
For example:

from arandomness.argparse import CheckThreads
import argparse
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-t', '--threads',

action=CheckThreads,

7

http://www.gnu.org/licenses/
https://docs.python.org/3/library/argparse.html#action
https://docs.python.org/3/library/argparse.html

arandomness Documentation, Release 0.1.0rc6

type=int,
default=1,
help='number of threads to use')

args = parser.parse_args()

When -t is parsed, the value is passed to CheckThreads which then checks that the value is between 1 and the
maximum number of threads on the computer as per multiprocessing.cpu_count().

API Documentation

class arandomness.argparse.CheckThreads(option_strings, dest, nargs=None, **kwargs)
Argparse Action that ensures number of threads requested is valid

__call__(parser, namespace, values, option_string=None)
Called by Argparse when user specifies multiple threads

Simply asserts that the number of threads requested is greater than 0 but not greater than the maximum
number of threads the computer can support.

Parameters

• parser (ArgumentParser) – parser used to generate values

• namespace (Namespace) – parse_args() generated namespace

• values (int) – actual value specified by user

• option_string (str) – argument flag used to call this function

Raises

• TypeError – if threads is not an integer

• ValueError – if threads is less than one or greater than number of threads available on
computer

3.1.3 CopyRight

CopyRight is an argparse action that simply takes in text, strips it of leading and trailing whitespace, prints
it, and exits the program. Its functionality is analogous to argparse‘s version. The action can take in arbitrary text
and is only named CopyRight for code readability.

from arandomness.argparse import CopyRight
import argparse
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--copyright',

action=CopyRight,
copyright_text='This is my copyright',
help='print copyright and exit')

args = parser.parse_args()

API Documentation

class arandomness.argparse.CopyRight(option_strings, dest, copyright_text=None, nargs=None,
**kwargs)

Argparse Action that prints a program copyright

8 Chapter 3. Contents

https://docs.python.org/2/library/multiprocessing.html#multiprocessing.cpu_count
https://docs.python.org/3/library/argparse.html#action

arandomness Documentation, Release 0.1.0rc6

option_strings
list – list of str giving command line flags that call this action

dest
str – Namespace reference to value

nargs
bool – True if multiple arguments specified

**kwargs
various – optional arguments to pass to super call

It does not escape my notice that this action prints arbitrary text without any sort of “copyright-specific” at-
tributes or mangling. This function is only called this for readability in code.

__call__(parser, namespace, value, option_string=None)
Prints the given text stripped of excess whitespace and exits

Parameters

• parser (ArgumentParser) – parser used to generate values

• namespace (Namespace) – namespace to set values for

• value (str) – actual value specified by user

• option_string (str) – argument flag used to call this function

Raises

• TypeError – if value is not a string

• ValueError – if value cannot, for any reason, be parsed by commas

3.1.4 Open

Open is an argparse action that seamlessly handles reading and writing compressed files using the gzip, bz2, and
lzma libraries. To do this, Open actually exposes the arguments of each to libraries *File function to the command
line after automatically selecting the proper library based on the arguments it receives. Essentially, this action
operates in a read mode and a write/append mode. In read mode, when mode is equal to any read mode supported
by the appropriate library such as r or rb, Open reads the first few bytes of the file to see what compression format
the file uses and then opens the file with the corresponding in decompression algorithm. In write mode, basically
when mode is set to anything else, Open just checks the file extension and maps it to the corresponding compression
algorithm. If Open does not recognize the first few bytes of a file or a file extension, it defaults to reading and writing
in plain text.

As aforementioned, Open exposes the arguments of the underlying library. It does this by collecting arbitrary ar-
guments, filtering them by the supported arguments of the *File functions, and only passing those arguments
to the function. For example, GzipFile and BZ2File can control the level on compression via the argument
compresslevel while LZMAFile uses preset to control compression levels. In order to use these arguments at
the argparse level, simply add them as options to Open as follows:

from arandomness.argparse import Open
import argparse
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('--gzip',

action=Open,
mode='r',
type=str,
compresslevel=9,
help='compressed file to read')

3.1. argparse 9

https://docs.python.org/2/library/gzip.html
https://docs.python.org/2/library/bz2.html
https://docs.python.org/3/library/lzma.html

arandomness Documentation, Release 0.1.0rc6

parser.add_argument('--bz2',
action=Open,
mode='w',
type=str,
compresslevel=9
help='compressed file to write')

parser.add_argument('--lzma',
action=Open,
mode='w',
type=str,
preset=9,
help='compressed file to write')

args = parser.parse_args(['-i', 'input.gz', '-o', 'output.xz'])

As stated, this works for any argument and arguments that aren’t supported by the *File are silently ignored.

Common use example:

from arandomness.argparse import Open
import argparse
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-i', '--input',

action=Open,
mode='r',
type=str,
help='compressed file to read')

parser.add_argument('-o', '--output',
action=Open,
mode='w',
type=str,
help='compressed file to write')

args = parser.parse_args(['-i', 'input.gz', '-o', 'output.xz'])

API Documentation

class arandomness.argparse.Open(option_strings, dest, mode=’rb’, nargs=None, **kwargs)
Argparse Action that detects and opens compressed files for rw

option_strings
list – list of str giving command line flags that call this action

dest
str – Namespace reference to value

mode
str – mode to pass to (de)compression algorithm

nargs
bool – True if multiple arguments specified

**kwargs
various – optional arguments to pass to argparse and algo

__call__(parser, namespace, value, option_string=None, **kwargs)
Detects and opens compressed files

Parameters

• parser (ArgumentParser) – parser used to generate values

10 Chapter 3. Contents

arandomness Documentation, Release 0.1.0rc6

• namespace (Namespace) – namespace to set values for

• value (str) – actual value specified by user

• option_string (str) – argument flag used to call this function

• **kwargs (various) – optional arguments later passed to the compression algorithm

3.1.5 ParseCommas

By default, argparse parses multiple arguments by spaces. While useful, it can sometimes be more practical, or
at least easier to read, arguments parsed by commas when multiple arguments make use of nargs. ParseCommas
simply takes a string, splits it by commas, and sets the resulting list as the value for the argument. For example:

from arandomness.argparse import ParseCommas
import argparse
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument('-a', '--an_argument',

action=ParseCommas,
type=str,
help='nargs using a string')

args = parser.parse_args(['hello,world'])
print(args.an_argument)

So the argument hello,world would be set as ['hello', 'world'] in args.

API Documentation

class arandomness.argparse.ParseCommas(option_strings, dest, nargs=None, **kwargs)
Argparse Action that parses arguments by commas

option_strings
list – list of str giving command line flags that call this action

dest
str – Namespace reference to value

nargs
str – number of args as special char or int

**kwargs
various – optional arguments to pass to super call

__call__(parser, namespace, value, option_string=None)
Called by Argparse when user specifies a comma-separated list

Simply splits a list by commas and adds the values to namespace.

Parameters

• parser (ArgumentParser) – parser used to generate values

• namespace (Namespace) – namespace to set values for

• value (str) – actual value specified by user

• option_string (str) – argument flag used to call this function

Raises

• TypeError – if value is not a string

3.1. argparse 11

https://docs.python.org/3/library/argparse.html#nargs

arandomness Documentation, Release 0.1.0rc6

• ValueError – if value cannot, for any reason, be parsed by commas

3.2 string

Initializes string package of arandomness

Copyright: __init__.py initializes string package of arandomness Copyright (C) 2017 Alex Hyer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

3.2.1 Introduction

The string subpackage of arandomness contains a couple functions that analyze or manipulate strings in some way.
That’s about as specific as this subpackage gets. Enjoy!

3.2.2 autocorrect

The autocorrect function takes a single query string and a list of “correct” strings and identifies which string in the
list the query most closely matches. There are many far more robust autocorrect algorithms written in Python than this
one, but they all require a list of words organized by their frequency in a given language. Basically, these autocorrect
algorithms are aimed at correcting words specific to a language and are thus better suited for use in language processing
software, e.g. texting apps. This algorithm uses any list of strings and is order-agnostic. Thus, my autocorrect is
better suited for attempting to match queries to small lists of arbitrary strings.

To help realize this concept, I have used this function in a program that presented data in a database about programs
available on a given system. The query was the user’s request and the possible strings was simply the list of program
names in the database. Thus, if a user misspelled a program name, the program likely produced the proper entry.

API Documentation

arandomness.string.autocorrect(query, possibilities, delta=0.75)
Attempts to figure out what possibility the query is

This autocorrect function is rather simple right now with plans for later improvement. Right now, it just attempts
to finish spelling a word as much as possible, and then determines which possibility is closest to said word.

Parameters

• query (unicode) – query to attempt to complete

• possibilities (list) – list of unicodes of possible answers for query

• delta (float) – minimum delta similarity between query and any given possibility for
possibility to be considered. Delta used by difflib.get_close_matches().

Returns best guess of correct answer

12 Chapter 3. Contents

http://www.gnu.org/licenses/

arandomness Documentation, Release 0.1.0rc6

Return type unicode

Raises AssertionError – raised if no matches found

Example

>>> autocorrect('bowtei', ['bowtie2', 'bot'])
'bowtie2'

3.2.3 max_substring

The max_substring function takes in a list of strings and finds the longest substring that they all share. By
default, max_substring starts at the beginning of each string, but it can be optionally start at a later position as
demonstrated in the docstring examples.

API Documentation

arandomness.string.max_substring(words, position=0, _last_letter=’‘)
Finds max substring shared by all strings starting at position

Parameters

• words (list) – list of unicode of all words to compare

• position (int) – starting position in each word to begin analyzing for substring

• _last_letter (unicode) – last common letter, only for use internally unless you really
know what you are doing

Returns max string common to all words

Return type unicode

Examples

>>> max_substring(['aaaa', 'aaab', 'aaac'])
'aaa'
>>> max_substring(['abbb', 'bbbb', 'cbbb'], position=1)
'bbb'
>>> max_substring(['abc', 'bcd', 'cde'])
''

3.3 trees

Initializes trees package of arandomness

Copyright: __init__.py Initializes trees package of arandomness Copyright (C) 2017 Alex Hyer

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

3.3. trees 13

arandomness Documentation, Release 0.1.0rc6

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>.

3.3.1 Introduction

The argparse subpackage of arandomness contains scripts and classes relating to trees.

3.3.2 OmniTree (Deprecated)

OmniTree is a class for creating a tree where each node can contain multiple children and multiple parents. I began
writing this class because I could not find an extant tree library that supported this many-to-many paradigm. While
binary and/or hierarchical tree with only a single parent are common, see anytree, trees like OmniTree are not. After
a lot of R&D, I realized that these is such a structure, a graph. Basically, many-to-many trees don’t exist because
they cannot by definition. Thus, OmniTree is pointless as there are already amazing libraries for manipulating and
managing graphs, such as NetworkX. As such, OmniTree is deprecated and is only included for archival purposes.

API Documentation

class arandomness.trees.OmniTree(label=None, children=None, parents=None)
A many-to-many tree for organizing and manipulating hierarchical data

label
unicode – optional, arbitrary name for node

__init__(label=None, children=None, parents=None)
Initialize node and inform connected nodes

__weakref__
list of weak references to the object (if defined)

add_children(children)
Adds new children nodes after filtering for duplicates

Parameters children (list) – list of OmniTree nodes to add as children

add_parents(parents)
Adds new parent nodes after filtering for duplicates

Parameters parents (list) – list of OmniTree nodes to add as parents

find_branches(labels=False, unique=False)
Recursively constructs a list of pointers of the tree’s structure

Parameters

• labels (bool) – If True, returned lists consist of node labels. If False (default), lists
consist of node pointers. This option is mostly intended for debugging purposes.

• unique (bool) – If True, return lists of all unique, linear branches of the tree. More
accurately, it returns a list of lists where each list contains a single, unique, linear path
from the calling node to the tree’s leaf nodes. If False (default), a highly-nested list is
returned where each nested list represents a branch point in the tree. See Examples for
more.

14 Chapter 3. Contents

http://www.gnu.org/licenses/
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://anytree.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://networkx.github.io/

arandomness Documentation, Release 0.1.0rc6

Examples

>>> from arandomness.trees import OmniTree
>>> a = OmniTree(label='a')
>>> b = OmniTree(label='b', parents=[a])
>>> c = OmniTree(label='c', parents=[b])
>>> d = OmniTree(label='d', parents=[b])
>>> e = OmniTree(label='e', parents=[c, d])
>>> a.find_branches(labels=True)
['a', ['b', ['c', ['e']], ['d', ['e']]]]
>>> a.find_branches(labels=True, unique=True)
[['a', 'b', 'c', 'e'], ['a', 'b', 'd', 'e']]

find_loops(_path=None)
Crappy function that finds a single loop in the tree

3.3. trees 15

arandomness Documentation, Release 0.1.0rc6

16 Chapter 3. Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

arandomness Documentation, Release 0.1.0rc6

18 Chapter 4. Indices and tables

CHAPTER 5

Copyright

arandomness operates under the GPLv3 License and may be edited and redistributed as per that license.

19

arandomness Documentation, Release 0.1.0rc6

20 Chapter 5. Copyright

Python Module Index

a
arandomness, 1
arandomness.argparse, 7
arandomness.string, 12
arandomness.trees, 13

21

arandomness Documentation, Release 0.1.0rc6

22 Python Module Index

Index

Symbols
__call__() (arandomness.argparse.CheckThreads

method), 8
__call__() (arandomness.argparse.CopyRight method), 9
__call__() (arandomness.argparse.Open method), 10
__call__() (arandomness.argparse.ParseCommas

method), 11
__init__() (arandomness.trees.OmniTree method), 14
__weakref__ (arandomness.trees.OmniTree attribute), 14

A
add_children() (arandomness.trees.OmniTree method),

14
add_parents() (arandomness.trees.OmniTree method), 14
arandomness (module), 1
arandomness.argparse (module), 7
arandomness.string (module), 12
arandomness.trees (module), 13
autocorrect() (in module arandomness.string), 12

C
CheckThreads (class in arandomness.argparse), 8
CopyRight (class in arandomness.argparse), 8

D
dest (arandomness.argparse.CopyRight attribute), 9
dest (arandomness.argparse.Open attribute), 10
dest (arandomness.argparse.ParseCommas attribute), 11

F
find_branches() (arandomness.trees.OmniTree method),

14
find_loops() (arandomness.trees.OmniTree method), 15

L
label (arandomness.trees.OmniTree attribute), 14

M
max_substring() (in module arandomness.string), 13

mode (arandomness.argparse.Open attribute), 10

N
nargs (arandomness.argparse.CopyRight attribute), 9
nargs (arandomness.argparse.Open attribute), 10
nargs (arandomness.argparse.ParseCommas attribute), 11

O
OmniTree (class in arandomness.trees), 14
Open (class in arandomness.argparse), 10
option_strings (arandomness.argparse.CopyRight at-

tribute), 8
option_strings (arandomness.argparse.Open attribute), 10
option_strings (arandomness.argparse.ParseCommas at-

tribute), 11

P
ParseCommas (class in arandomness.argparse), 11

23

	Introduction
	Installation
	Contents
	argparse
	string
	trees

	Indices and tables
	Copyright
	Python Module Index

